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Matrices: A rectangular arrangement of mn numbers or quantities in m rows and n    

columns is called a matrix of order    . It is denoted as    [   ]   
 . The elements 

    are called diagonal elements of the matrix.   

Types of matrices: 

(1) Square Matrix-If a matrix has equal number of rows and columns, it is called a 

square matrix. Its order will be     or     or n
2
, e.g. 
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(2) Row Matrix-. If a matrix has only one row and any number of columns, it is called a 

Row matrix. Its order will be     , e.g., 

   [1 3 6 9]1x4 

(3) Column Matrix - A matrix, having one column and any number of rows, is called a 

Column matrix. Its order will be     ,e.g.,  
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(4) Triangular Matrix- A square matrix, all of whose elements below the leading 

diagonal are zero, is called an upper triangular matrix. A square matrix, all of whose 

elements above the leading diagonal are zero, is called a lower triangular matrix e.g., 
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  Upper triangular matrix  Lower triangular matrix 

 

(5) Diagonal Matrix. A square matrix is called a diagonal matrix, if all its non-diagonal 

elements are zero e.g., 
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(6) Unit or Identity Matrix. A square matrix is called an identity or unit matrix if all the 

diagonal elements are unity and non-diagonal elements are zero. An identity matrix 

of order     is denoted as        e.g., 
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(7) Null Matrix (Zero  Matrix)- Any matrix, in which all the elements are zeros, is 

called a Zero matrix or Null matrix, e.g., 
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 (8) Scalar Matrix. A diagonal matrix in which all the diagonal elements are equal to a 

scalar, say (c) is called a scalar matrix. 

          For example; 
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i.e., 
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 ][  is a scalar matrix if 
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(9) Transpose of a Matrix. On interchange of the rows and the corresponding columns 

in a given matrix A, the new matrix obtained is called the transpose of the matrix A 

and is denoted by 'A  or A
T
 e.g., 
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      Also (i) AA )'(  (ii) '')'( BABA   (iii) '')'( ABAB   (Reversal Law) 

(10) Symmetric Matrix. A square matrix will be called symmetric, if for all values of       

i and j, 
ji

a
ij

a   i.e., AA '  

e.g., 
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(11) Skew Symmetric Matrix. A square matrix is called skew symmetric matrix, if  

 (1) 
ji

a
ij

a   for all values of i and j or AA '  

 (2)  all diagonal elements are zero, e.g., 
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(l2) Conjugate Transpose of Matrix. Transpose of the conjugate (or vice-versa) of a 

matrix A is denoted by
*

Aor  


A . So )A(or  )(
*

A  A  

 Let  
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Also (i) AA *)*(  (ii) **)*( BABA   (iii) **)*( ABAB   (Reversal Law) 

(13) Hermitian Matrix. A square matrix )(
ij

aA   will be called a Hermitian matrix if 

every i- jth element of A is equal to conjugate complex j-ith element of A. 

In other words, 
ji

a
ij

a   

All the elements in the principal diagonal will be of the form 
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ii

a   . .00a if  Also 
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Hence, all the diagonal elements of a Hermitian Matrix are always real. 

e.g.    
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The necessary and sufficient condition for a matrix A to be Skew Hermitian is that 
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(14) Skew Hermitian Matrix. A square matrix )(
ij

aA   will be called a Skew Hermitian 

matrix if every i-jth element of A is equal to negative conjugate complex j-ith 

element of A. 

In other words, jia
ij

a   

All the elements in the principal diagonal will be of the form 

    iia
ii

a   or 0 iia
ii

a  

if    iba
ii

a   then ibaiia   

   0)()(  ibaiba    002  aa   

 ibib
ii

a  0  .So 
ii

a  is pure imaginary or 0. 



Hence, all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure 

imaginary. 

e.g.    























iii

ii

iii

32)54(

20)32(

5432

 

The necessary and sufficient condition for a matrix A to be Skew Hermitian is that 
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(15) Idempotent Matrix. A square matrix, such that AA 2  is called Idempotent 

Matrix. 

e.g. AAA 
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(16) Periodic Matrix. A square matrix A will be called a Periodic Matrix, if 

   AAk 1  

 Where k is a +ve integer. If k is the least +ve integer, for which AAk 1 , then k is 

said to be the period of A. if we choose 1k , we get AA 2 and  we call it to be 

idempotent matrix. 

(17) Nilpotent matrix. A square matrix will be called a Nilpotent matrix, if 0kA  (null 

matrix) where k is a +ve integer; if however k is the least +ve integer for which 

0kA , then k is the index of the nilpotent matrix. 

e.g., 0
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A is nilpotent matrix whose index is 2. 

(18)  Involuntary Matrix. A square matrix A will be called an Involuntary matrix, if 

IA 2 (unit matrix). Since II 2  always      Unit matrix is involuntary. 

(19) Equal Matrices. Two matrices are said to be equal if 

 (i)     They are of the same order. 

 (ii)     The elements in the corresponding positions are equal. 

Thus if    
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(20) Singular Matrix. If the determinate of the square matrix is zero, then the matrix is 

known as singular matrix e.g. 
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A  is singular matrix, because .066|| A  

(21) Orthogonal Matrix. A square matrix ‘A’ is called orthogonal if 

         (               )  

 

(22) Unitary Matrix. A square matrix ‘A’ is called unitary if 

         (               )  



Rank of Matrix (Echelon & Normal Form) 
 Rank of a Matrix- The number of non-zero rows in a matrix when it is either in Echelon or 

Normal form is called rank of the matrix. The rank of matrix A is denoted as rank(A) or 

 ( )  

 The rank of a matrix is said to be r if 

(a) It has at least one non-zero minor of order r. 

(b) Every minor of A of order higher than r is zero. 

Note:  (i)  Non-zero row is that row in which all the elements are not zero. 

 (ii) The rank of the product matrix AB of two matrices A and B is less than the 

rank of either of the matrices A and B. 

 (iii) Corresponding to every matrix A of rank r, there exist non-singular matrices 

P and Q such that  
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Normal Form (Canonical Form) 

 By performing elementary transformation, any non-zero matrix A can be reduced to 

one of the following four forms, called the Normal form of A: 

 

 (i)  I   (ii)   0rI   (iii)  
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 The number r so obtained is called the rank of A and we write .)( rA  The form 
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0rI
 is called first canonical form of A. Since both row and column transformations 

may be used here, the element 1 of the first row obtained can be moved in the first column. 

Then both the first row and first column can be cleared of other non-zero elements. 

Similarly, the element 1 of the second row can be brought into the second column, and so 

on. 

 

Example- Find the rank of the matrix. 
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Solution- Here, we have 
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The number on non-zero row is 2, therefore Rank 2)( A  

 

Rank of matrix by triangular form(Echelon Form)  

Rank = Number of non-zero row in upper or lower triangular matrix. 



Note. Non-zero row is that row which does not contain all the elements as zero. 

Example-Find the rank of the matrix 
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Rank   Number of non zero rows 2 .  

 The inverse of a symmetric Matrix 
      The elementary transformations are to be transformed so that the property of being 

symmetric is preserved. This requires that the transformations occur in pairs, a 

row transformation must be followed immediately by the same column transformation. 

Example-Find the inverse of the following matrix employing elementary transformations: 
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Solution- The given matrix is 
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Hence, 
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Example-If ,
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A  Find two non-singular matrices P and Q  such that .IPAQ   

Hence find 1A . 

Solution- Since 3333 IAIA   
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Solution of Simultaneous Equations 
Consider a system a linear equations as 
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Here matrices A, X and B are called Coefficient, Variable and Constant matrices 

respectively. 

If B=0 then system AX=0 is called Homogeneous and for B 0, the system AX=B is called 

Non-Homogeneous. 

 Types of Linear Equations 
(1) Consistent. A system of equations is said to be consistent, if they have one or 

more solution i.e. 

  
223

42





yx

yx
                

1263

42





yx

yx
 

            Unique solution   Infinite solution 

(2) Inconsistent. If a system of equation has no solution, it is said to be inconsistent 

i.e. 
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 Consistency of A System of Linear Equations 
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is called the augmented matrix.  ]:[ BA .  



The augmented matrix ]:[ BA  is reduced into Echelon form by elementary row 

transformations and find rank [A] and rank ]:[ BA  . Now three cases arise: 

(a) Consistent equations. If Rank [A]   Rank ]:[ BA  

 (i) Unique solution: Rank [A]  Rank ]:[ BA  n (number of variables or unknowns) 

 (ii) Infinite solution: Rank [A]   Rank ]:[ BA  r, r < n 

(b) Inconsistent equations. If Rank [A]   Rank ]:[ BA  

At the end of the row transformation the value of z  is calculated from the last equation and 

value of y  and the value of x  are calculated by the backward substitution. 

 

In Brief :  

               A system of non-homogeneous linear equations 

             AXB 

                      Find R (A) and R ]:[ BA   

     

     RAR )( ]:[ BA         RAR )( ]:[ BA  

                 Solution exists, system                                      No solution, system 

                        is consistent                                                       is consistent 

 
RAR )( ]:[ BA  

n(no. of unknowns)       RAR )( ]:[ BA < n(no. of unknowns) 

                 Unique                           Infinite no. of 

                             solutions                       solutions 

Example-Test the consistency and hence solve the following set of equation. 

  

334

123

22

321

321

321







xxx

xxx

xxx

 

  4242 321  xxx      

Solution- The given set of equations is written in the matrix form: 
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Here, we have augmented matrix ],[ BA 
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Number of non-zero rows   Rank of matrix. 

    3)(]:[  ARBAR  

Hence, the given system is consistent and possesses and unique solution. In matrix form the 

system reduces to 
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From (2),  011 22  xx  

From (1)  1210 11  xx  

Hence,  0,1 21  xx  and 13 x  

 

Example- Show that the equations 

 1186,36206,1162  zyzyxyx  

 are not consistent. 

Solution- Augmented matrix ]:[ BA  

 

























1:1860

3:6206

11:062


122 3

1:1860

30:620

11:062

RRR 

























 

    
233 3

91:000

30:620

11:062

RRR 

























 

The rank ]:[ BA of  is 3 and the rank of A is 2 

Rank of A Rank ]:[ BA . 

The equations are not consistent. 

Example- Investigate the values of   and   so that the equations: 

  

 





zyx

zyx

zyx

32

8237

9532

 

Have  (i)  no solution 

 (ii) a unique solution 

 (iii) an infinite number of solutions.   

Solution- Here, we have, 
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The above equations are written in the matrix form 
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(i) No solution. 

 Rank )(A Rank ]:[ BA  

 05  or 5  and 09     9  

(ii) A unique solution 

 Rank  ]:[)( BARA Number of unknowns 

 05    5  

(iii) An infinite number of solutions. 

 Rank )(A  Rank .2]:[ BA  

 05  and 09   

 5  and 9      Ans. 

 Homogeneous Equations 
 For a system of homogeneous linear equations OAX   

 (i) OX  is always a solution. This solution in which each unknown has the 

value zero is called the Null Solution or the trivial solution. Thus a homogeneous system is 

always consistent. 

  A system of homogeneous linear equations has either the trivial solution or 

an infinite number of solutions. 

 (ii) If )(AR number of unknowns, the system has only the trivial solution. 

 (iii) If )(AR number of unknowns, the system has an infinite number of non- 

trivial solutions. 

                                            A system of homogeneous linear equations 

      AXO 

        

     

                                                                   Always has a  

                                                                       solution 

                                                   ]:[)( BARAR   

)(AR = n(no. of unknowns)                                                                  )(AR = n(no. of 

unknowns) 

           Unique of trivial                                                Infinite no. of non-trivial 

                             Solution                                       solutions 



              (each unknown equal to zero)  

Note.(i) For zero solution,| |     

        (ii) For non-zero solutions, | |     

Example. Determine ‘b’ such that the system of homogeneous equations 
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has  (i) Trivial solution  

       (ii) Non-Trivial solution. Find the Non-Trivial solution using matrix method. 

Solution- Here, we have 
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(i) For trivial solution: We know that 0,0  yx  and .0z So b can have any value.  

(ii) For non-trivial solution: The given equations are written in the matrix form as: 
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For non-trivial solutions or infinite solutions  2)(AR Number of unknowns 

  8,08  bb        Ans. 

Eigen values  
 Eigen values and eigen vectors are used in the study of ordinary differential 

equations, analysing population growth and finding powers of matrices. 

 Eigen Values 

  Let 
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      YAX   

Where A is the matrix of order nxn, X is the column vector and Y is also column 

vector of order nx1 ……(1) 



Here column vector X is transformed into the column vector Y by means of the 

square matrix A. 

Let X   be a such vector which transforms into X  by means of the 

transformation (1). Suppose the linear transformation AXY   transforms X into a scalar 

multiple of itself i.e. X . 
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      …(2) 

Thus the unknown scalar   is known as an eigen value of the matrix A and the 

corresponding non zero vector X as eigen vector. 

The eigen values are also called characteristic values or proper values or latent 

values. 

Let 





















221

131

122

A  

 









































































2

1

1

2

3

2

1

1

2

100

010

001

221

131

122
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matrix 

Characteristic Polynomial: The determinant || IA   when expanded will give a 

polynomial, which we call as characteristic polynomial of matrix A. 

Some Important Properties of Eigen Values 

(1) Any square matrix A and its transpose 'A  have the same eigen values. 

Note. The sum of the elements on the principle diagonal of a matrix is called the 

trace of the matrix. 

(2) The sum of the eigen values of a matrix is equal to the trace of the matrix. 

(3) The product of the eigen values of a matrix A is equal to the determinant of A. 

(4) If n ...,, 21  are the eigen values of A, then the eigen values of  

(i)  k A are nkkk  ...,, 21   (ii)  mA  are 
m

n

mm  .......,, 21  

(iii)  1A  are 
n

1
....,,

1
,

1

21

.  

Cayley-Hamilton Theorem 

Satement. Every square matrix satisfies its own characteristic equation. 

 If 0)...()1(|| 2
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of nn  matrix ],[ ijaA  then the matrix equation 
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Example-Verify Cayley- Hamilton theorem for the matrix 
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Solution- The characteristic equation of the matrix is  
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By Cayley-Hamilton Theorem, 

  052  IA         …(1) 
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From (1) and (2), Cayley-Hamilton theorem is verified. 

Again from (1), we have 
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Multiplying by 1A , we get 
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Example-Find the characteristic equation of the matrix 
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 Hence find 1A . 

Solution- Characteristic equation of matrix A  is  

   0||  IA   
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    0)4)(1( 2    or 04423    



By Cayley-Hamilton Theorem 

  04423  IAAA  

   044 12  AIAA  (Multiplying by 1A ) 

    ]4[4 21 IAAA 
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From (1), we have 
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Characteristic vectors or Eigen vectors 
As we have discussed in earlier a column vector X is transformed into column vector Y by 

means of a square matrix A. 

 Now we want to multiply the column vector X by a scalar quantity   so that we can 

find the same transformed column vector Y. 

 i.e.,   XAX   

 X is known as eigen vector. 

Properties of eigen vectors 

 1. The eigen vector X of a matrix A is not unique. 

 2. If n ,....,, 21  be distinct eigen values of an nn  matrix then corresponding 

eigen vectors nXXX ,....,, 21  form a linearly independent set. 

 3. If two or more eigen values are equal it may or may not be possible to get 

linearly independent eigen vectors corresponding to the equal roots. 

 4. Two eigen vectors 
1X  and 

2X  are called orthogonal vectors if .02

'

1 XX  

 5. Eigen vectors of a symmetric matrix corresponding to different eigen values 

are orthogonal. 

Example-Find the eigen value and corresponding eigen vectors of the matrix 
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Solution- 0||  IA   
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The eigen values of the given matrix are 1  and 6 . 

(i) When 1 , the corresponding eigen vectors are given by 
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 Let kx 1
, then kx 22   

 Hence, eigen vector 
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(i) When 6 , the corresponding eigen vectors are given by 
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21 2xx   

Let 
11 kx  , then 
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1
kx   

Hence eigen vector 
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Hence eigen vectors are 
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Example-Show that the matrix 
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5103

A  has less than three linearly independent 

eigen vectors. Is it possible to obtain a similarity transformation that will diagonalise this 

matrix? 

Solution- 0||  IA   
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By trial 

Let 2 , then .01232288      )2(    is one factor 
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Eigen vector for 3  
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Eigen vector 
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Eigen vector for 2  
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    i.e., 
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  Eigen vector 
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We get one eigen vector corresponding to repeated root .2 32    

Eigen vector corresponding to 32 2    are not linearly independent. 

Similarity transformation is not possible. 

Example- Find the eigen values, eigen vectors the modal matrix and diagonalise the matrix 

given below. 
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Solution-The characteristic equation of the given matrix is 
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Eigen vectors 

When 1 , 
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  02 32  xx         ...(1) 
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Putting 03 x  from (2) in (1), we get 0002 22  xx  

 Eigen Vector 
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When 2 , 
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Eigen vector 
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When 4 , 
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32 xx   

Eigen Vector 
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Model matrix 
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Let us diagonalise the given matrix: 
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Diagonalization of a matrix 
Theorem. If a square matrix A of order n has n linearly independent eigen vectors, then a 

matrix P can be found such that APP 1
is a diagonal matrix. 

Example-Find a matrix P which diagonalizes the matrix 

 









32

14
A , verify DAPP 1

 where D  is the diagonal matrix.     

Solution-The characteristic equation of matrix A is  
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Eigen values are 2 and 5. 

(i) When 2 , eigen vectors are given by the matrix equation 
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Let   kxkx 2, 21   

Hence, the eigen vector  
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(ii) When 5 , eigen vectors are given by the matrix equation 
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Let kx 1
, then kx 2

 

Hence, the eigen vector  
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Modal matrix   
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For diagonalization 
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Verified. 

 

 

 

         

          

          

          

           


